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NATIONAL ADVISORY COMMI!!TEIJ

TECH3TICAL MEMORANDUM

THE HZIAT TRANSF5!R TO A PLATE IN

FOR AERONAUTICS

No. lb45
.

FLOW AT HIGH SPEHD

BY E. Eckert and O. Drewitz

SUMMARY

The heat transfer in the laminar boundary layer of
a heated plate in flow at high speed can be obtained by
integri~tion of the conventional differential equations
of the boundary la,yer, so long as the’ material values
can be rega.rdcd ‘as constant. This.premise is fairl~ well
satisfied at speeds up to about twit’e the sonic speed and
at not excsssive temperature rise of the heated plates
The gsncra.1 solution of the equation includes Pohlhausenjs
specific cases of heat transfer to a plate at low speeds
and of the plate thermometer. The solution shows that
the heat transfer coefficient at high speed must be com-
puted with tile same equation as at low speed, when it is
referred to the ciifference of the wall temperature of the
heated plate in respect to its IInatural temperature.’!
Siilce this fact fOllOIJS from the linear structure of the
differential equation describing the temperature field,
it is equally applicable to the heat transfer in the
tur’oulent boundary layer.

IitTRODUCTIOif

The development of skin radiators and the utilization
of h~at agzinst icing, togsthzr with the necessity of seal-
ing the pressure cabins of stratosphere aircraft against
low outside temperature, have introduced increasing in-
terest in heat transfer problems. English tests, as well
2S those by Seibert (reference 1) have indicated that the
heat transfer to wing profiles can be quite accurately
predicted from that of the flow along a flat pl:?te. Even
the heat transfer to an airplane fuselage can be” simplified-*
to that along the flat plate. Our knowledge on heat trans-
fer past a pl?.te sxtcnds, it is true, only to low airspeeds.

*l!Dcr ‘w,!lrmeliberg?.n~an eine mit grosser Goschwindigkcit
ltings ailgcstrdmte Platte. I?orschung, vol. 11, no. 3, May-
JULI~, 1940, pp. 116-124.
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And the cited measurements on wing profiles themselves
were made only at airs~eeds from 20 to 60 meters per sec-
ond. An application o; the test data to speeds reached
by modern high-speed aircraft involves two) difficulties.
First, the compressibility of air must “De considered at
such speeds; second, the heat introduced in the boundary
layer by internal friction reaches values far from neg-
ligible. The effect of these phenomena on the heat trans-
fer to the flat plate will be analyzed in the present
re-oort.

Heat transfer in the laminar boundar~ la~g~.- Start-—.-——————————_—— --——_—-_——————— ---——— .——
ing with the heat transfer in the boundary layer to a
plate in longitudinal flow, the plate is regarded as
infinite perpendicular to the direction of flow. Iixing,.
in this flow, a coordinate system with the x axis in
the plane of the plate placed in stream direction and the
Y axis perpendicular to the plate, the differential equa-
tions of the boundary layer read:

––—– + :-)~(Pu) ——— = o
ax ay

where

u velocity component in x direction

v velocity component in y direction

T temperature

P air density

n viscosity

?$ thermal conductance

(1)

(2)

(3)
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Cp specific heat per unit weight at constant pressure

g gravitational- acceleration

The equations are expressed in the engineering system of
units, g cancels out in the physical system, because in
the latter the specific heat is referred to unit mass.*
Outside of the boundary layer the speed is to have the
constant nagnitude Uo ; at the plate itself it is zero.
Prandtlls hypothesis of small boundary layer thickness
which leads to the above differential equations, shows
that the j?r~~su&e_~n the boundary Jayer of the flat plate
and hence in the entire field-of flow is constant. The
material quantities, therefore, depend only on t-he temper-
ature , that is, for air the density varies, according to
the gas equation, inversely proportional to the absolute
temperature, the viscosity and the thermal conductance
about proportional to the 0.75 power of the absolute tem-
per~ture, while the specific heat remains practically un-
changed. The greatest temperature differences that can
occur as a result of the interanl friction in air (and in
any substance where Prandtl ilumber is less than unity) , are
of the order of the” adiabztic temperature rise uo~/2gcp.

At soilic speed expressed with as = ~g (K-1) Cp T. the
zasadiabatic temperature rise is AT =

2gcp

hence the relative variction of dsnsity in

la~er due to the temperature accumulation

K-1
=— T and

2

the boundary

Ap AT c-l—=—= —
PT2

for air with an adiabatic exponent ~= 1.4, is therefore,

~ = 20 percent. At airspssds up to velocity of sound
P
the m~terinl values therefore do not va~y very mu,ch, hence
may be regardsd .as constaat, provided that the impressed
temperature difference of the plate relative to zas in
undisturbed flow is not excessive. Bus>mann and ‘-..nKarnGn**
have solved the friction and telil-peraturecoilditions in the
laminar boundary layer of a plate for the specific case.of
flowing gas having the Prandtl number Pr=l, where the
v~riation of the material values is considered. The calcu-.
l%tions iildicate in agreement with the previous estimation

*In equation (3) and those following, the mechanical equiva-
lent of he~,t A is omitted, since it is superfluous by
dimensionless presentation of the formulas; it merely requires
the.t the equation 1 kcal = 427 mkg is applicable.
**SCG references 2 and 3.

.
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that the effect of the variable material values does not
beco:.lepci”ceptible except at great Mach numbers (greater
than 2). Limited to Mach numbers smaller or only a little ~
great e:’ tkan unity, the differential equations ‘(l)to (3)i“ead

(2’)

v = q/p kiilernaticviscosity

-(l+’ signifies the tem~oerature increase relative to
the value in undisturbed air stream

ea_-ua,tion (1~ ) is fulfilled, Equation (2 I) i“ecluces, accord—
J
inS co Bias ius {reference 4) with the variables

r

E=+y;:
.

‘n:- c = ~-v!.t to the conventional cliffer ent ial equat ion
Jv Uox

(4)

f’o:,,’hichthe limit]nc coll?Lit~ons are:

‘c

u~=o=O and

uo c,
u-~=m=uo . Since, — — according to the above,

‘=–2d~
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and inserting the I?ranfi.tl
nui~ber Pr ~ ‘0 in g/A, equation (.3!) transforms; according
to Pohlhausen (r%ference 5),to

Pr uoz~+pr#!=-—__
d! (IE 2 2gcp

(5)

~jlj-sis a linear inhomageneous differential;. ec~uation for
sol-rin{: the increase of temperature ** Init& isa
functiion of ~ known through the solution of e~-uation (4),
the other quantities ai”e constant. By introducing a new
u~-kn~~~~iii-or d&/d( it can be reduced to a differential
ec~uation of the t“irst ord-er.

‘7P.esolution of the relatecl homogeneous differential
eguatiion

(6)

Physically, the postin{” of the tLi~tur”Ding term f (t ) equal
to :<erc in equation (5) si{~nifies that the heat. introduced
b;: i;,tci-nalfriction is negll:cted in the solution Of the
tcr,ll]eraturefield. This is admissible at low speeds, 3e-
ca,uce the speed u o enters squared in f (!).

On these premises temperature diff-erences in the flow
--ar e Aormcd only wfien the plate is heated and dissipates heat

on t~.e gas ancl conversely ~~ithdraws heat from the gas by
cooling. With !CIV signifying iho plate temperature and

Ico the ><,a,~ tenperztture in ui~di~turbed flov, the limiting
coacl.itions‘~,c., to vhich the solution of the clifferential
@q-Ll-atio~must De fitted, read:

1

I’.c.l. 01(0) = TW–TO; L*C.2. al(m) = o

i?

--.
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The constants Cl and c= “are obtained from the
general solution (7) by entering the limiting conditions.
!Chus

(8)

E t ~t

I
-.-Pr { d!

~I(!) = (Tw - To)[l-a e -1
m o
n

in which 1 =
/

e
-Pr{t~df d5

- that is,
z

a function of

o

the Prandtl number.

This solution is identical with that given in a
slightly different form by Pohlhausen ”(reference 5) . “

Equation (8) is evaluated in figure 8; it indicates
the temperature field for different Pr at small flow
v~locitieso At the wall, u = O and V=o; hence
a’~l
5j=-=o’ according to equation (31). The curves begin

with infinitely small aurvature at 5=0; they then de-
flect quite sharply in the horizontal asymptote. The
field of velocity itself is readily apparent. Substitut-

(

*I
ing the unknown 81 = 2 1-

)
for +~ in equa-

Tw - To

tion (6) does not alter the form of the equation, but the
limiting conditions for >CI read: ,9!(0) = o and
*l(m) = 20 Then the same differential equation (4) or (6)
and the same limiting conditions are applicable to d~/d~
and s! at pr = 1. Both functions of 5 must therefore

bs
d~ 41 u

identical: .&1 It follows that 1 -
z=” Tw - To = ~“

The lines in figure 1 for Pr = 1 therefore indicate, at
the same time, the velocity profile for all Pr. The
thickness ratio of the frictional boundary layer to the
thermal boundary layer is therefore also immediately
obtainable from the graph. For an oil with a Pr = 1000,
for instance, the line Pr = 1000 indicates the extent of
the thcrmic boundary layer; the line Pr = 1, the extent
of the frictional boundary laysr. The latter extends for
this oil ten times as far into the fluid as the former.

The amount of heat given off by the plate per unit
area per unit time at point x is
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where u is tho coefficient of heat transfer. Then the
Nusselt number is-

(9)

Rs, is the Reynolds. number formed with the distance from
the plate front edge. According to Pohlhau~en (reference

5)a= 0.664 )= is a good approximation, which holds up
to Pr = 1000 according to Ten Bosch (reference 6), The
formula for the heat transfer coefficient herewith becomes

~~ . 0.332 ~%

Integration with respect to the
the total heat removal from start of

x /

(lo)

plate length .affo~ds
plate to point x

/ 1Uo x
Q= q dx =A — a (Tw - To)

v
o

and the Nusselt number formed with the. mean heat tr,nnsfer
coefficient from beginning of plate to point x

am x
Num = — =

A
a~~= 0.664 & k (11)

The heat transfer in the laminar boundary layer at
high speed.- The general solution of the inhomogeneous
differential equation (5) is obtained with the solution
(equation (7)) of the homogeneous equation by Ilvariation
of the constants. II It reads:
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The torop,~rature field at heat transfer to the plate
with gre~t flow velociti~s follows by appropriate choice
of limitin$~ con[~.itions. Given th~ wall temperature l’w

an(l the te:.lperature in unt.istur’beclflow To, they read:

Th.? related solution reads:

The heat re~,oval of the plate at point x per unit
surface is

(14)
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Equations (13) and (14) can be transformed if the gas
temperature in undisturbed. flow -is replaced by the temper-
ature that the unheated wall assumes in the gas stream,
This is henceforth termed Ilnatural temperaturell !Ce.
Since, in this instance, the wall neither absorbs nor dif-
fuses heat, the temperature field is

Performing this operation with equation (13) gives the
temperatu~e field-at the unheated wall “. -

whzrc again*

d~
)

(15)

The increase of temperature assumed by the wall follows
from (15) for ~=o

.
32

#e = #z(o) = b (16)

1 2gcp

t~ith it the natural temperature of the wall itself is

ae

known: Te = T.O+ ~e. The quantity
can be

uo=/2 g c
P

read from figure 2. “

In the range of Prandtl numbers (Pr = 0,5 to 2)/

J :+-=@ iS a v.er~ good ap-involved for gases s
o J?

proximate. From f-ig.ure3, wherein the adiabatic tempera-
U02

ture rise — is shown plotted against the speed
2gcp ‘o *

*This equation also agrees with the solution given by
Pohlhausen for the plate thermometer.

L
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the value itself can be formed without further calcula-
tion, Several experiments with air were made for pre-
dicting the natural temperature Te. The recorded values
are in good agreement with those to be marked off in fig-
ure 2. Figure 4 shows the temperature field in the bound-
ary layer at an unheated wall for different Prand.tl num-
bers. Since the temperature rise at the wall, according
to figure 2, becomes so much greater for a given speed as
the Prandtl number is greater, hence reaches especially
great values for oils (in the lubricating film, for in-
stance) (~ case in point being that treated by G. Vogel-
pohl, in 01 u. Kohle, vol. 14, 1938, p. 996) , equation
(15) was evaluated Up to Pr = 1000.

Subsequent to the introduction of Te in equation
(13) conformably to equation (16), the temperature field
of the heated plate can be written in the form

The first summand represents the temperature field $1(5)
resulting at an increase of plate. temperature Tw - Te
in the absence of frictional heat; the second summand in-
dicates the temperature rise $2(L) due to heat of friction.
The temperature field therefore represents the superposi-
tion of the two separate fields, as is evident from the
linear construction of equation 3. In figure 5 the temper-
ature fields generated in this manner are shown for a
Prandtl number of Pr = 0.7, Air, according to the most
recent measurements (reference 7) has a Prandtl number of
Pr = 0.715; the temperature fields reproduced in figure 5
are therefore sufficiently exact for this gas. The ordi-
nate scale at the right, from which the increases of tem-
perature for an airspeed of 200 meters per second can be .
rea,d direct, affords a concept of the occurring speeds.
The bracketed numerical values give the temperature differ-
ences Tw - To for the same airspeed. The heat given off

by the plate is equal to zero according to (14) and (16)

for the line with the parameter
Tw - To ~= , for the two

Tw - To
@e

temperature fields 2
T

and ‘J -To=o
—43 = 9

%
equally
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great with the difference that in the second case the
heat flow is directed toward the plate..

With the introduction of Te the transfer of heat
from the wall to the gas (equation (14)) assumes the

;orm

(18)

and the nondimensional local heat transfer coefficient,
when referred, according to

(19)

to the difference between wall and natural temperature,
follows at

(20)

The Nusselt number formed with the me?.n heat transfer from
beginning of plate to point x is

(21)

The hca.t transfer factors defined according to equation
(19) therefore follow the same relations as at small flow
velocities. The natural temperature required for calculat-
ing the heat flow q can %e taken from figure 2.

AISO of interest in many instants is the amount of
heat produced by internal friction. The frictional heat
developed per unit volume is given by the term

()au 2.

VP
~

of equation (3!). From it follows the heat

generated at point x in the total boundary layer by in-
tegration with respect to y at

w

= up /() au 2q ~ ‘y = VJ27 ($)’d’ ’22)
w o

Evaluated, the integral
f( )

d2~ 2
]d~ yields 2.018. Xow it

*r
o
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is a simp].e matter to predict the temperature the wall
must have in order that the total frictional heat flows
onto the plate. It merely remains that equations (18)
and (22) be equated. The resultant temperature field is
shown as curve a in figure 5,

Recheck of the derived formulas for Pr = 1.
Busemann and Von Karm~n had computed, for a gas with a
Prandtl number Pr = 1, the velocity profile with allow–
ante for the variation of the material values. Now the
reliability of the earlier assumption of constant material
val-aes for the calculation of the heat transfer is to be
checked with the rsults of the present study, Between the
velocity u in the boundary layer of a gas with a
Prandtl number Pr=l and the absolute temperature T
at the same point, there exists the relation (reference 2)

r 2

1

2
2

7Jo u Uo

()

u
T = T\V – Tw — To — – —— (23)

L 2 g Cp U. Zgcp<

(Th,, plate temperature; To, Uo, temperature and speed in
undisturbed gas flow outside the boundary layer). The
unheated plate is characterized. by the fact that the tem—
perature gradient at the wall is equal to zero: ?)T/~y = 0.
But , since the value of au/dy at the wall is certainly
different from zero and the speed at the wall is zero, it
implies that the bracketed term in equation (23) must be—
come zero. The plate temperature in this instance— that
is, the natural temperature – is therefore

u 02
Te = To + ––c

2gcm
.

in agreement with equation (16), where b assumes the value
1 for Pr = 1, according to figure 2. The temperature T2
in the boundary layer of the unheated plate follows from
equation (23):

2 2

‘o

()

u
T2=T — ——— ——

e 2 g Cp Uo

The equation, can also be written in the form

2

‘o

CP
T2 + ~= Cp To + —

zg 2g
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where it expresses the well-known fact that for a gas
with Pr = 1 in the boundary layer the sum of enthalpy
and motion energy has the same value at every point of
the unheated plate, ‘This applies also, as is known, to
the turbulent bounary layer (reference 8).

The ratio of in,crease of temperature in the bound-
ary layer to that at the wall is

+2 _ T2 - To 2
——

< - Te - To = ()
1-$

The teinperature field for Pr = 1, reproduced in figure
4, can therefore be derived in simple manner from the
v~locity profile (fig. 1).

After insertion of Te in
aturc field of the heated- plate

T = TW-(T,V- Te) -u-—
U.

equation (23) the temper-
assumes the

uo~

()

U2
---
2g~<

form

(23a)

The tcmpet:a,ture gradient at the

/Am\

wall follows at

because, since the speed at the wall is zero, the second
term in the above equation disappears. Reference of the
heat transfer factor again to the difference between wall
temperature and natural temperature affords

-A ~q ‘a!i?
a=

()~ y.~ =
- ,W [!@~=o (24)

T — Te -W

A and su-oscquently ‘n,v, and CP are given the sub-
scriyt w? since their values are to be entered for the
wall tenporaturo. Figure 6 shows the velocity profiles
at the unhoatcd plate for three Mach numbers plotted
against tho nondimensional distance from the plate

. ;WF
~.~,

according to the calculations by Von K&rm&

,. .

I , ,,. ,, . , , ,,.. . .. ,..,,, . . .- ... . . . . . .- . . . . ... . ----- .- . . .—--— --—
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ad Tsicn (reference 3). It is readily apparent that the
discrepancies ‘between the velocity profiles are smalls
especially at Mach numbers up to M=~. The velocity
gradient at the wall is only about 3 percent greater at
M=2 than at. M = O. Even at M = 10 the difference
is no more than 20 percent. To the extent that the tem-
perature differences (Tw – Te) do not become excessive
at the heated plates the velocity profiles do not vary
perceptibly; hence the heat transfer factor which pre—
viously has been computed at all sp,eeds with the velocity
profile for 14=() differs, at the most, by 3 percent
from the true value of a gas at Pr = 1. At other Pr
not too far from unity the error is of the same order of
magnitude.

The foregoing arguments further indicate the temper-
ature at which the material values should be entered in
the heat transfer equations. Equation (24) already implied
by subscript w that the thermal conductance must be
introduced at the wall temperature. Even the differences
in the velocity profiles at different M are much smaller,
if , as in figure 6, the plate distance with the kinematic
viscosity at the wall th~ t~mperature is made nondimensional.,
In figure 3 of the Von ICarman - Tsien report (reference 5)
the velocity profiles are plotted against

~
E = Y/;~ (Vo, kinematic viscosity at temperature in

undisturbed gas flow), The discrepancies between the
individual profiles are substantially greater.

Reynolclsl formula for the ratio of heat flow Q =
-htI(bT/by)y=o onto the plate to its towing resistance

w = qt@l/ay,)y=o

Q gcE(To – Tw)-= ——
w Uo

holds true at low speeds and for a material with the
Prancltl number Pr = 1. At higher Mach numbers the ratio

$) follows from the foregoing at
.

or, with consideration to Pr=gcpT/A=l

--AA
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‘t,
0.-a at Q= g ‘PTA - Tw)--.—-.—-
m,

I

;J .... . ‘m
);l

‘o
g~
#l Reynoldst formula therefore is equally applicable in gas
ri
‘JJ; dynamics when the natural wall temperature Te}~) is sub-

(S; stituted’ in place of the gas temperature To. It applies

f to laminar as to turbulent boundary layer.
,4~.,.,,, Turbulent boundary layer__L- From the technical point————__--.______,

of view the heat transfer in the turbulent boundayer layer
is of much greater importance than in the laminar, since
the latter changes to turbulent, even by completely undis-
turbed inflow, if the Reynolds number formed with the
distance from the start of the plate reaches 500,000. This

& occurs a few centimeters from the plate at high speeds. An.*
exact theoretical treatment of the flow and temperature
conditions is in this instance not possible and feasible
only under certain assumptions concerning the turbulent in-

$ terchange. However, it can ‘be stated that the linear super–I
position of the of the temperature fields, as it occurs in

r the laminar boundary layer, remains also in the turbulent
so long as the material values inclusive of the density can
be regarded as constant, which, as previously shown, is the
case for the flat plate up to Mach numbers M=2. This is
manifested by the general differential equation for the
heat flow in a mass particle

D&=AA2$+qg P Cp dt (diss. fct. (y)) (25)

(D/dt = substantial differential quotient with respect to
time, diss. f$t. (E) = dissipation function for the veloc-
ity vector . For, even this equation (25) is already
linear in ~– exactly as equation (3~), which results from
the.foregoing for steady flow with the possible omissions
in the thin hour.dary layer. The field of flow is completely
independent of the temperature field under the assumption
P = constant, and therefore also the heat developed by
internal friction: (q diss. fct. (y)) a quantity defined
by the velocity field.

The temperature field, without these sources of heat
is known from measurements at low speeds. The theory of
similitude affords the aspect of the temperature field at
high speeds but in absence of internal friction; namely,
precisely as in a slow flow with the same value of Re and
Pr, leaving for measurement then merely the temperature
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field formed at high airspeeds by internal friction at an -
c unheated plate. And with it the field for heat transfer
at high speed is obtained by superposition.

But from the linear superposition of the temperature
fields, it further follows that in laminar as in turbulent
boundary layer, the characteristic relation

Nu = f (Re, Pr) (26)

established for the heat transfer at low speeds, must be
equally applicable at high speeds, if the heat transfer
factor is referred to the difference between the wall tem-
perature and the natural temperature. Inasmuch as the
heat transfer at low speeds is now fairly well established
(reference 6) the knowledge of the l’natural temperature”
of the plate is sufficient for calculating the heat trans-
fer at high speeds. According to calculations by Schirokow
(reference 8) the natural temperature at the plate can be
indicated. But it would be desirable to check these values
by experiments.

Heat transfer on profiles.- If the body concerned is
a profile with considerable thickness rather than a thin
plate, the flotv outside of the boundary layer is also
affected by it. A velocity field and a pressure field is
formed about the body. In this event the equation (2) of
the boundary layer must be enlarged by the pressure gradient -
ap/~ x on the right-hand side. Then the material values
(density, viscosity,and the thermal conductance) vary on a
surface normal within the boundary layer solely as a result
of their temperature relationship. When this, as on the
plate, is neglected for not too great Mach numbers! the
boundary layer equations assume the form ..

.

where x denotes the coordinate along the surface of the
body, y that along the surface normal, 4 the increase
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of temperature over the value in the potential flow at the
bound’ary-+o-fthe ..bounda,xFtil.ay.e.r..The density gradient
ap/ax and the pressure gradient .ay/ax, as well as the
density P, the thermal conductance X, and the viscosity
‘q, are given as functions of x by the flow outside of
the bouudary layer. As a result, the velocity profile can
be computed again simply from equations” (111) and (21t) and
because of the linearity of equation (311), the linear
superposition of the temperature. fields is applicable as
on the plate. This ‘implies that the local heat-transfer
factor is independent of the temperature difference.
Admittedly, the range o.fvalidity of the heat transfer
formulas secured by tests at low velocities is smaller ~
than a-t the plate even if the heat transfer factor is re-
ferred to the difference: wall temperature and natural
temperature, since on approaching sonic velocity the field
of flow outside of the boundary layer is slightly deformed
owing to the variable density. On exceeding the sonic
velocity it varies rather considerably due to the occur=
rence of compression shocks. With the knowledge of the
external field of flow, the equations (111) to (311), on the
other hand, can be integrated and so the velocity and tem-
perature field in the boundary layer solved. The solution
for the flow in the neighborhood of a stagnation point is
to be re~orted shortly.

For the cited reasons the application of the heat
transfer factors on the flat plate to the heat exchange
on airplane wings and fuselages, as is customary at low
velocities, requires a certain caution. But , if the areas
with especially great pressure differences (nose of wing)
are excluded from the analysis! an approximate’solut ion is
certainly possible by means of the data for the flat plate.
In conclusion, an estimate is given of the effect of the
internal friction on the heat transfer at the initially
mentioned applications in airplane design. On a water
radiator mounted in the wing of an airplane and swept in
flight with an air velocity of 200 meters per secorid, the
temperature difference of the surface wetted by the water
relative to air in flight in ground proximity, amounts to
about 65°, the difference between natural temperature and
air temperature, according to figures 2 and 3, to 17° C
in the laminar boundary layer and between 17° and 18° C in
the turbulent. The controlling difference for the heat
transfer between wall temperature and natural temperature
is therefore 47’0 to 48°; whereas without internal friction
the total increase of 65° would be free for the heat trans-
fer which would be, therefore, around 40 percent greater.

.
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With glycol cooling the effect is about half as great,
since corresponding to the higher temperature of glycol
the increase of temperature of the wetted surface is about
twice as great as with the water radiator. In the c,abin
of a stratosphere airplane without ventilation and without
heating a temperature would result that is e~ual to tie
natural temperature. of the surface of the airplane fuse-
lage, hence at a flying speed of 200 meters per second is
from 17° to 18° higher than the” outside air temperature.
The latter is -66.5° at flying heights above 11 kilometers.
If the air temperature in the cabin is to be kept at +15° C
by additional heating, it need only correspond to a 17° to
180 smaller temperature difference. The conditions are
therefore similar to those obtaining on a wing radiator
with water cooling, and at 200 meters per second flying
speed the heat transmission through the insulation is re-
duced by about 40 percent as a result of the air friction.
AS the flying speed increases the effect of the internal
friction increases very materially. From 380 meters per
second airspeed on the water,radiator ceases to give off
heat at sea level, and insulation of the cabin of the
stratosphere aircraft is no longer necessary. In lower
flying levels provisions would already have to be made for
cabin cooling.

Translation 3Y J. Vanier,
National Advisory Committee
for Aeronautics.
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Figure 4.- Temperature field $2 of an m!heated plate in flow at high
speed at different Pr in laminar boundary layer.

Figure 5.-
Temperature
field $
oria heated
plate in
flow at
hi#l speed
of Pr = 0.7
with laminar
boundary layer
in the temper-
ature field,
CUrVe a, the
total heat pro-
duced in the
boundary layer
by i~ternal -1
fri~tio]lis
transferred to
the plate.
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